Challenges, Barriers, and Priorities for Nanomaterials Metrology

- Summary of issues conveyed in plenary talks and in breakout session talks.
- Bob Keller's selective observations
- Susan Holl's (and others') observation:
 - We care about different technologies and reliability concerns, but are addressing the same problems.

Nanomechanical Issues in Fabrication: General Technological Challenges and Materials Barriers

Technological

- Each device has its own unique reliability issues.
- High yield, uniformity, reliability over 20 years
- Failure mode analysis should lead to info useful for re-design
- Acceleration factor < 10 desired
- Tools/techniques: measure nm motion, addressing 6 DoF, faster than device resonance frequency
- Automated assembly ineffective for < 0.5 mm (5 x 10⁵ nm ...)
- Go digital! Atomically precise engineering
 - Need tools!
 - Pattern ALD, using STM?
- Stuck in 2-D! SPM...
- Need for speed... characterization
 - Solution: XRD?
- Need metrology for structure of low-level lines, esp. early in the process
- Tools capable of multiple measurements:
 - Thickness, crystalline phase, texture
- Large Area Temperature control

- MEMS: stiction, friction, wear
 - Solution? Non-contacting parts
- Fatigue
 - Solution? Conservative design stress
- Creep
- Hinge memory
- Stress: absorb, balance, control
- CNTs: problems
 - Dimensional uniformity, defects
 - Separate by electronic structure
 - Can't make continuous fibers
 - Need much better process control and qualification
- Nanocomposites
 - Need better understanding, using both simulation and experiments, esp. CNT/matrix interface
- QDs:
 - Need uniform size distribution
 - Need uniform spacing
 - Control plasticity
 - Nanopatterning by FIB?

More Generally...

- Make small things with more control
 - Size uniformity
 - Defect control
- Patterning at nanoscale
 - QDs
 - ALD layers

Nanomechanical Issues in Manufacturing **Breakouts**

Technological

- Develop relationships between insitu tests and real failures
- Local temperature measurements?
 - Solution: micro-Raman?
- Coupled measurements
- Resolution:
 - Space, energy
- *In-situ*, coupled measurements
 - Optical/mechanical
 - Electrical/mechanical
- More modeling! (coupled with lab equipment)
- More collaborations:
 - Manufacturing development & materials characterization/metrology development

Structure/property relationships for monolayers (adhesion, friction, wear)

- Effects of surface roughness
- Mechanical integrity of poly-Si vs. metals
- Develop process variables = $f(\sigma_{res})$ stress gradients, σ_{vs} , UTS)
- Structure uniformity, defects in coatings for MEMS
- Wear: sliding and impact
- Know where all the atoms are
- Bulk properties:
 - Elastic, dielectric, DOS
- Gradient characterization (chemical, physical), in complex matrices

Nanomechanical issues in Manufacturing Breakouts 2

Technological Materials

- Faster, higher resolution imaging/morphology
 - SEM, AFM, TEM
- Separation, purification methods
- Inline-capable techniques for CMP:
 - Particle size, morphology, dispersion, aggregation, correlation to performance
- High-throughput adhesion measurement
- New tests/models for new material combinations
- High temperature interfacial reliability:
 - Segregation, voiding
- Multiple high-resolution techniques
- Nanoscale strain measurement
- Nanoscale electrical characterization
- Nanoscale structure size/shape
- Non-destructive measurement of defects
- Deconvolute sample-probe interaction

Nanomechanical Issues in Characterization and Testing General Technological Challenges and Materials Barriers

Technological

- Instrument consistency for E, H
- Small length scales
 - Difficult measurement problems even with state of the art instruments
- Need good test samples:
 - No dislocations, surface defects
- Tip/sample interaction energies need to be understood
 - Contact area effects
- "Desperately needed":
 - Hi-res, *in-situ* deformation in electron microscope
- Accurate and Proven AFM technology!
- Better control of SPM tip motion, I.e. no unintentional lateral motion
- The perfect AFM:
 - Accurate knowledge of F and d for AFM
 - F sensor perpendicular to surface
 - Sharp, durable tip

- In general (Fall '04 MRS):
 - Size effects, temp or viscoelasticity, multiscale modeling, adhesion/surface energy
- Difficult to separate stress and temperature effects on stress-strain behavior

Nanomechanical Issues in Characterization and Testing General Technological Challenges and Materials Barriers 2

Technological

- The perfect AFM (continued)
 - F sensor with stiffness control for both mechanical properties and topography
 - Easy switch between F and d control
 - Wide range of operational frequencies, temperature
 - High-bandwidth, low-noise pre-amp
- MUST combine experiment and modeling for adhesion/interfacial fracture
- Direct imaging of contact areas

- Need more than incremental advances in models/tests for adhesion, beyond modification of existing tests
 - Revolutionary, not just evolutionary? (BK)

Nanomechanical issues in Characterization and Testing

Technological

Breakouts

- Scaling of test methods to submicrometer samples:
 - Uniaxial, multiaxial, torsion
 - Deformation mapping
 - Gripping, manipulation
- Rapid, fully automated fabrication methods
- Calibration standards for nano-test equipment
- Localized strain measurement
- Nanoindenter tip geometry control
- Better FIB resolution (SE imaging)
- Experimentation on nanoscale biological materials
- Sub-micrometer scale toughness measurements, standards
- Measurement of stress gradients, esp. over small dimensions
- Sub-micrometer temperature measurement (direct)
- Microforce standards

Nanomechanical issues in Characterization and Testing Breakouts 2

Technological Materials

- Improvements in spatially resolved characterization:
 - SEM, SIMS, in-situ TEM, microdiffraction, micro-Raman
- Need better characterization of:
 - AFM tips
- Need AFM and model velocities to match